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Heuristic model for the energy spectrum of phase turbulence

J. T. N. Medeiros and A. S. da Rosa Sieso
Instituto de Fsica, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, RS, Brazil
(Received 5 April 2001; published 30 October 2p01

We present a heuristic model for the energy spectrum of the one-dimensional phase turbulence in the steady
state of the Kuramoto-Sivashinsky equation. Our model contains an energy transfer mechanism from low- to
high-wave-vector modes. The energy transfer is written as the sum of local and nonlocal interactions. Our
analytical results show good agreement with numerical simulations, particularly for the hump in the energy
spectrum, which is mainly due to the local interactions.
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A satisfactory understanding of spatially extended syssystem forms cells of a preferred size. These cells are locally
tems, although fascinating, is a difficult task. The evolutioncompressed or stretched giving rise to cell creation or anni-
of these systems is generally described by nonlinear partiddilation. This mechanism provides a positive renormalized
differential equations where analytical results are rathegiscosity» and the cell interactions are sufficiently uncorre-
scarce[1]. Phase turbulgnce is the |rregul_ar behawor of anated to give rise to the random forcing
extended system described by the paradigmatic Kuramoto- Qne of the quantities of primary interest when the KSE is
Sivashinsky equatio(KSE), one of the simplest partial dif- nymerically integrated is the mean energy of thenode,
ferential equations exhibiting chaotic behaigf. It appears (k) which is the Fourier transform of the two-point corre-
in a variety of physical systems driven away from equilib- jation function ofu(x,t). Numerical simulation results for
rium such as reaction-diffusion chemical systef@ or  the energy spectruri(k) have shown three main character-
flame front propagatiofd]. In one dimension it reads istics: (i) a flat region for low wave numbek, (i) a hump

neark=1, and(iii) a strongly decaying region for higk
(1) [10-14. Despite the paradigmatic relevance of this model
there are only a few analytical results fafk), just two as
far as we know. Pomeagt al.[10] considered a local energy
flux as the product oE(k) with anad hoc K factor in order
to take into account the assumkd* power law in the ob-
(2) served spectrum. They obtained a constant energy flux by
ignoring energy injection. In particular, the flat region of the
This equation can also be written in the standard scaled forrapectrum is absent. Tdi.1] obtainedE(k) by a statistical
Us+ U+ Uyy+ Uy = 0. The periodic boundary conditions model in which pulses with imposed rigid shapes are created
normally used arei(x+L)=u(x), u,(x+L)=uy(x), etc.L  and annihilated. The rigid shapes were calculated by numeri-
is the length of the system. In the thermodynamic limit ( cally solving the static KSEY;=0).
— ) there is no free control parameter. The unstable growth In this work we calculate the energy spectrum analyti-
of fluctuations given by the termwu,, acts as an energy cally, using a heuristic model for the energy transfer among
source in the |arge_Wave|ength region' In the Short_mOdeS, resulting in very gOOd agreement with the numerical
wavelength region the fluctuations are attenuated by the tergimulations. First of all, we derive a basic dynamic equation
WUy Which acts as a stabilizing energy sink. We can sayor equal time correlation functions of the KSE. Using
that » and u play the roles of an “antiviscosity” and a =u(x,t) andu’=u(x’,t)=u(x+r,t), we easily find
“hyperviscosity,” respectively.

1
2
et E P+ VOt U Pxxxx= 0,

with v, u>0. Definingu= ¢, as the velocity field, one gets
the alternative equation

Uy UUy+ Uy Uy yy= 0.

Several papers have addressed the study of the long- g(u’u) 1 d(u?u’—u’?u) 92 9%
wavelength behavior—the hydrodynamic limit—of the KSE +3 +2|v—+u—|u'u=0.
. h . . . ot 2 ar arz (gr4
in one dimension. It was conjectured by Yaklib}, using a 3

perturbative renormalization group approach, that the statis-
tical behavior of the KSE, written as in E(), is equivalent

to the stochastic Burgers equatif] U+ UU,— pUyy+ 7,
=0, where7>0 is a renormalized viscosity ang, is a

Taking the spatial average of the above equation we obtain

2 4
Gaussian white noise forcing. Alternatively, the KSE written 9Ca(r,1) + 9Cs(r,0) +2 ,,_+M‘9_ C,=0, (4
as in the Eq.(1), is equivalent to the Kardar-Parisi-Zhang ot or ar? ar®

(KP2) equation[7] ¢+ ¢5/2— v+ 1,=0. The numerical

work of Snepperet al. [8] strongly supports Yakhot's con- where C,(r,t)=(u’u) and Cs(r,t)=3((u?u’—u’u)) are,
jecture. An analytical demonstration of the connection betespectively, the two- and three-point correlation functions.
tween KS and KPZ equations was given by Chow and HwaEquation(4) is similar to the von Keman—Howarth equation
[9] by explicitly coarse-graining the KSE. Generically, the for fluid turbulence[15]. The energy spectrum is defined by
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E(k)=U*(k)U(k), whereU(k) are the Fourier amplitudes proach of fluid turbulence models in the inertial subrange,
of the velocity fieldu(x) = fdké"*U (k). The spectral form we haveS(q,p)# — S(p,q), which means that we have a net

of Eq. (4) reads energy transport.
) . We propose a heuristic model fbir based on dimensional
JE(k,t)/dt=2vk°E+T(k) —2uk E, (5 analysis in the Kolmogorov wal5]. From the definition of

o ) ) ] the velocity fieldu and parameters and n in the KSE, we
which is fundamental in this work. In the above equation the5ye the following dimensiongiu]=LT"%, [»]=L2T 1

term 2Vk2EE| is _ca!led_ the energy injecti(_)n and/uk“E [/'L]: LAT 1L Equation (5) giVGS [(?E(k)/(?t]Z[T(k)]z[l]
=D the energy dissipation. The teriii(k) arises from the _rp1—|37-3 \We assume that the dependence ohand
nonlinear term and redistributes the energy among the indip for the local case is on the same basis so we take it as the
vidual spectral modes. It is given by geometric mean of and D: T, o ID [ (vk2E) (uk*E)]Y2
=(vu)YA4CE and S(k)=(vu)Yk*E(k), a kind of Pao
T(k):f S(k;p,q)dgdp, model [15]. For the nonlocal case we will assurf¢q,p)
«p™E(p)"rqME(q) e, similar to the von Kaman model
[15]. From dimensional consideratiomg,+n,=1 and m,
+my=2. It is physically reasonable to put,=n,=1/2
since we assume thatand D are on the same footing. For
simplicity we also assume only positive integers figy and

S(k;p,q)=—Im[kU(k)U(p)U(q)s(k+p+q)]. (6)

In the steady stateE(k,t)/dt=0 and we can easily see
that T is subject to the constraiffydkT(k) = 0. This impor- d i that th I ibilities f i
tant integral condition shows us that no energy is generateg afn W? cartl eﬁslzksee a —Ze ondy po_ss(,)l 'A"'es orane
or lost byT, but it is redistributed among the modes. In other ui( r_orlnf owto hig ar:_e rr]np— andmq= i S?ltjrr]n";(gSE
words, the transfer mechanism cannot directly affect the er‘/—*_f’.’_ I rol;? now on, which means a rescaling of the '
ergy injectionl or the dissipatiorD. There is a net energy we Tinafly obtain
flow from small to highk and it can be stated ds-T=D. S — vp2EY2(p)EY2
With the previous constraint we can exprdsas (P.a)=ypP"E(P)EHa),

AT1(K) S(k)=Nk*E(K). (12)

ak '

(7)

The model parameterg and\ are dimensionless.

We are now able to obtain a differential equation for the
wherell(k) is an energy flux due to the nonlinear term. Thegpectral function. Writing the integral E¢8) with the model
steady state for the energy spectrum can be rewritten in théxpressions fofl, andII,, we get
integral form

k o k
k k —v“ e(p)pzdpJ e(q)dQ}—k{k“ez(k)}ﬂf dp(p*
H(k>=—f0T<p>dp= fOU(p)—D(p)]dp. ® 0 ‘ 0

—p?)e*(p), (13)
All previous expressions are exact and to solve them one
needs some approximation to disconnect the three- from theith the definition VE(k)=e(k). Deriving this equation
two-point correlation function€; and C, in Eq. (4). Ex- three times with respect tg rearranging the terms, and de-
pressingll as a function ok and E(k), Eq. (5) is immedi-  fining e(k)=f(k)/k?, we finally obtain the following homo-
ately closed. Our first assumption for closing Eg) is to ~ geneous differential equation:
l/ivc?rzi:n as the sum of locdll, and nonlocally, contribu NG+ (K34 3NK2— K) 7+ (3K2— k- 1)f" =0. (14)

_ This is a very interesting equation and despite its linear form
=11+ 11y, . 9 : : .
we were not able to find exact solutions, except the trivial

For I, we admit the energy transfer as coming from thef=const. Nevertheless, we get particular solutions in two

injection | and dissipatiorD at the samé value, cases. ,
Local case y=0, corresponding to a local energy trans-
I, = S(k). (10)  fer. The energy spectrum B o«k ™ 4e~ (k* 1R/,

Nonlocal casex =0, corresponding to a nonlocal energy
For IIy. we assume that the energy flux at a particllar transfer. An interesting solution in this case, without poles

depends on all values &f and zeros in the energy spectrum, correspondg=t@ im-
) plying Ep = (1+k) 8.
_ * In order to obtain the well established result from numeri-
My (k)= fo d pfk dasip.q). (1D cal simulations that show a flat region in the energy spectrum

for k— 0, the conditiony/\ =3 must be fulfilled in Eq(14).
whereS(p,q)dpdqcan be interpreted as the specific rate of This relevant condition links the local and nonlocal param-
transferred energy from modes in the rangep(+dp) to  etersh andvy. It implies a null flux of energy{I=0) in the
modes in the rangeq(g+dg). Contrasting with the ap- absence of dissipatiorD(=0). In the limit of k—co the re-
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sult emerging from Eq(14) gives Exk 8, corresponding
also to a null flux, now in the absence of injectidn=0).

We solve the differential equation analytically in the low-
and highk limits and obtain the following nontrivial solu-
tions:

e(k—0)=Bg[ 1+ bggo(k)],

go=e M 3+3k+Kk2]/k?; (15)
and
e(k—©) =B, [1/k*+b..g.(K)],
g..=e 31+ 3/k+3k?]/K>. (16)

The above four paramete,, by, B.., and b, are the
integration constants written in a convenient way.
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The complete energy spectrum is obtained by matching FIG. 1. Energy spectra for the Kuramoto-Sivashinsky equation:
the two asymptotic solutions above with a third one, which isA andB are the results of our model with=1/3 and 1/6, respec-

obtained as a series solution in the interpgl,k,] around
the regular pointk=1. This point separates the regidn
<1 wherel dominates from the regiok™>1 whereD domi-
nates. We rewrite Eq14) replacing the variablé& by z=1
—k and we find the series solutiogz) nearz=0. The
three solutions are the trividd,= const and the series solu-
tionh; (h,) beginning with az(z?) term. Admitting that the
factor F =exg —(k+1/k)/\] from the local solution will sur-
vive neark=1 in the global solution, we finF=a+bz?
+ .- - after expanding it around=0. To fulfill the previous
condition we are restricted th, and h,, resulting in the
following solution:

e(k~=1)=B,[1k?+b;0,],

g1(K) =hy(1—Kk)/K>. (17)

tively. L is our local model approximatiorZ are the numerical
results of Zalesky12].

Fig. 1. The curveA, corresponding ta. =1/3, shows a par-
ticular good fitting at the right side of the hump. This agree-
ment is important since some auth¢ts10] admit the exis-
tence of an inertial subrange in this region. However, the
maximum of the hump is shifted to left. The curBecorre-
sponding toA=1/6, shows a better agreement with the
hump, in particular near the maximum. All curves show the
strong characteristic decay in the dissipative region of the
spectrum. The curvk represents only the local contribution
for the energy flux and a good fitting is obtained with
=1/5. As we can see, the local contribution gives an ad-
equate description of the spectrum in the irregular region. It
may be seen as a manifestation of the division of thick cells

B, andb, are integration constants. We have to determineand the coalescence of thin cells as in the Chow-Hwa model

the six integration constants in Eq45)—(17). Nevertheless,

their number is reduced to only two by matching the solu-

tions and their first derivatives at the matching poiqtand
K, .
We have normalized the numerical resultd—-14 to

[9]. This mechanism, involving onljocal change of wave
numbers and providing a band of states with nearby wave
numbers, seems to be a convincing physical interpretation

for our local model.

In conclusion, we have presented a heuristic model for the

Emad{K)=1 and we observe that they are almost collapsedSE energy spectrum based on dimensional analysis in the
into a single curve withE(0)=0.0892. We choose one of Kolmogorov way. The main characteristic of our model is
these curves to represent all the numerical results, the curtbat it contains a natural mechanism of energy transfer from
Z in Fig. 1, which was obtained by Zalesk$2]. Using the low- to highk modes. The energy flow is given as the sum of
numerical values folE,,(k) and E(0) together with the local and nonlocal interactions. The analytical results pro-
matching pointsk;=0.5 andk,= 1.5, eventually we obtain vided by our model show overall excellent agreement with
the complete energy spectra for different values of the locathe numerical calculations. In particular, the plateau for low
parametei. The nonlocal parametey is linked to the local k, the hump atk=1, and the decay for higk are clearly
one byy/A=3. observed. Our model does not have a strong dependence on

Our results show an overall agreement with the numericalhe free parametex; however, the local part of the energy
results and they are summarized by the cueB, andL in  flux accounts for the strong hump in the spectrum.
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