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Heuristic model for the energy spectrum of phase turbulence
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~Received 5 April 2001; published 30 October 2001!

We present a heuristic model for the energy spectrum of the one-dimensional phase turbulence in the steady
state of the Kuramoto-Sivashinsky equation. Our model contains an energy transfer mechanism from low- to
high-wave-vector modes. The energy transfer is written as the sum of local and nonlocal interactions. Our
analytical results show good agreement with numerical simulations, particularly for the hump in the energy
spectrum, which is mainly due to the local interactions.
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A satisfactory understanding of spatially extended s
tems, although fascinating, is a difficult task. The evoluti
of these systems is generally described by nonlinear pa
differential equations where analytical results are rat
scarce@1#. Phase turbulence is the irregular behavior of
extended system described by the paradigmatic Kuram
Sivashinsky equation~KSE!, one of the simplest partial dif
ferential equations exhibiting chaotic behavior@2#. It appears
in a variety of physical systems driven away from equil
rium such as reaction-diffusion chemical systems@3# or
flame front propagation@4#. In one dimension it reads

w t1
1

2
wx

21nwxx1mwxxxx50, ~1!

with n, m.0. Definingu5wx as the velocity field, one get
the alternative equation

ut1uux1nuxx1muxxxx50. ~2!

This equation can also be written in the standard scaled f
ut1uux1uxx1uxxxx50. The periodic boundary condition
normally used areu(x1L)5u(x), ux(x1L)5ux(x), etc.L
is the length of the system. In the thermodynamic limitL
→`) there is no free control parameter. The unstable gro
of fluctuations given by the termnuxx acts as an energ
source in the large-wavelength region. In the sho
wavelength region the fluctuations are attenuated by the t
muxxxx which acts as a stabilizing energy sink. We can s
that n and m play the roles of an ‘‘antiviscosity’’ and a
‘‘hyperviscosity,’’ respectively.

Several papers have addressed the study of the l
wavelength behavior—the hydrodynamic limit—of the KS
in one dimension. It was conjectured by Yakhot@5#, using a
perturbative renormalization group approach, that the sta
tical behavior of the KSE, written as in Eq.~2!, is equivalent
to the stochastic Burgers equation@6# ut1uux2 ñuxx1hu

50, where ñ.0 is a renormalized viscosity andhu is a
Gaussian white noise forcing. Alternatively, the KSE writt
as in the Eq.~1!, is equivalent to the Kardar-Parisi-Zhan
~KPZ! equation@7# w t1wx

2/22 ñwxx1hw50. The numerical
work of Sneppenet al. @8# strongly supports Yakhot’s con
jecture. An analytical demonstration of the connection
tween KS and KPZ equations was given by Chow and H
@9# by explicitly coarse-graining the KSE. Generically, th
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system forms cells of a preferred size. These cells are loc
compressed or stretched giving rise to cell creation or an
hilation. This mechanism provides a positive renormaliz
viscosity ñ and the cell interactions are sufficiently uncorr
lated to give rise to the random forcingh.

One of the quantities of primary interest when the KSE
numerically integrated is the mean energy of thek mode,
E(k), which is the Fourier transform of the two-point corr
lation function of u(x,t). Numerical simulation results fo
the energy spectrumE(k) have shown three main characte
istics: ~i! a flat region for low wave numberk, ~ii ! a hump
near k51, and ~iii ! a strongly decaying region for highk
@10–14#. Despite the paradigmatic relevance of this mod
there are only a few analytical results forE(k), just two as
far as we know. Pomeauet al. @10# considered a local energ
flux as the product ofE(k) with anad hoc k4 factor in order
to take into account the assumedk24 power law in the ob-
served spectrum. They obtained a constant energy flux
ignoring energy injection. In particular, the flat region of th
spectrum is absent. Toh@11# obtainedE(k) by a statistical
model in which pulses with imposed rigid shapes are crea
and annihilated. The rigid shapes were calculated by num
cally solving the static KSE (ut50).

In this work we calculate the energy spectrum analy
cally, using a heuristic model for the energy transfer amo
modes, resulting in very good agreement with the numer
simulations. First of all, we derive a basic dynamic equat
for equal time correlation functions of the KSE. Usingu
5u(x,t) andu85u(x8,t)5u(x1r ,t), we easily find

]~u8u!

]t
1

1

2

]~u2u82u82u!

]r
12Fn

]2

]r 2
1m

]4

]r 4Gu8u50.

~3!

Taking the spatial average of the above equation we obt

]C2~r ,t !

]t
1

]C3~r ,t !

]r
12Fn

]2

]r 2
1m

]4

]r 4GC250, ~4!

where C2(r ,t)5^u8u& and C3(r ,t)5 1
2 ^(u2u82u8u)& are,

respectively, the two- and three-point correlation functio
Equation~4! is similar to the von Ka´rmán–Howarth equation
for fluid turbulence@15#. The energy spectrum is defined b
©2001 The American Physical Society01-1
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E(k)5U* (k)U(k), whereU(k) are the Fourier amplitude
of the velocity fieldu(x)5*dkeikxU(k). The spectral form
of Eq. ~4! reads

]E~k,t !/]t52nk2E1T~k!22mk4E, ~5!

which is fundamental in this work. In the above equation
term 2nk2E[I is called the energy injection and 2mk4E
[D the energy dissipation. The termT(k) arises from the
nonlinear term and redistributes the energy among the i
vidual spectral modes. It is given by

T~k!5E S~k;p,q!dqdp,

S~k;p,q!52Im @kU~k!U~p!U~q!d~k1p1q!#. ~6!

In the steady state]E(k,t)/]t50 and we can easily se
thatT is subject to the constraint*0

`dkT(k)50. This impor-
tant integral condition shows us that no energy is genera
or lost byT, but it is redistributed among the modes. In oth
words, the transfer mechanism cannot directly affect the
ergy injectionI or the dissipationD. There is a net energy
flow from small to highk and it can be stated asI 1T5D.
With the previous constraint we can expressT as

T~k!52
]P~k!

]k
, ~7!

whereP(k) is an energy flux due to the nonlinear term. T
steady state for the energy spectrum can be rewritten in
integral form

P~k!52E
0

k

T~p!dp5E
0

k

@ I ~p!2D~p!#dp. ~8!

All previous expressions are exact and to solve them
needs some approximation to disconnect the three- from
two-point correlation functionsC3 and C2 in Eq. ~4!. Ex-
pressingP as a function ofk andE(k), Eq. ~5! is immedi-
ately closed. Our first assumption for closing Eq.~5! is to
write P as the sum of localPL and nonlocalPNL contribu-
tions:

P5PL1PNL . ~9!

For PL we admit the energy transfer as coming from t
injection I and dissipationD at the samek value,

PL5S~k!. ~10!

For PNL we assume that the energy flux at a particulak
depends on all values ofk,

PNL~k!5E
0

k

dpE
k

`

dqS~p,q!, ~11!

whereS(p,q)dpdq can be interpreted as the specific rate
transferred energy from modes in the range (p,p1dp) to
modes in the range (q,q1dq). Contrasting with the ap-
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proach of fluid turbulence models in the inertial subran
we haveS(q,p)Þ2S(p,q), which means that we have a n
energy transport.

We propose a heuristic model forP based on dimensiona
analysis in the Kolmogorov way@15#. From the definition of
the velocity fieldu and parametersn andm in the KSE, we
have the following dimensions:@u#5LT21, @n#5L2T21,
@m#5L4T21. Equation~5! gives @]E(k)/]t#5@T(k)#5@ I #
5@D#5L3T23. We assume that theT dependence onI and
D for the local case is on the same basis so we take it as
geometric mean ofI and D: TL}AID}@(nk2E)(mk4E)#1/2

5(nm)1/2k3E and S(k)}(nm)1/2k4E(k), a kind of Pao
model @15#. For the nonlocal case we will assumeS(q,p)
}pmpE(p)npqmqE(q)nq, similar to the von Ka´rmán model
@15#. From dimensional considerationsnp1nq51 and mp
1mq52. It is physically reasonable to putnp5nq51/2
since we assume thatI and D are on the same footing. Fo
simplicity we also assume only positive integers formp and
mq and we can easily see that the only possibilities for a
flux from low to high k are mp52 and mq50. Assuming
m5n51 from now on, which means a rescaling of the KS
we finally obtain

S~p,q!5gp2E1/2~p!E1/2~q!,

S~k!5lk4E~k!. ~12!

The model parametersg andl are dimensionless.
We are now able to obtain a differential equation for t

spectral function. Writing the integral Eq.~8! with the model
expressions forPL andPNL we get

2gH E
0

k

e~p!p2dpE
k

`

e~q!dqJ 2l$k4e2~k!%52E
0

k

dp~p4

2p2!e2~p!, ~13!

with the definition AE(k)5e(k). Deriving this equation
three times with respect tok, rearranging the terms, and de
fining e(k)5 f (k)/k2, we finally obtain the following homo-
geneous differential equation:

lk3f-1~k313lk22k! f 91~3k22gk11! f 850. ~14!

This is a very interesting equation and despite its linear fo
we were not able to find exact solutions, except the triv
f 5const. Nevertheless, we get particular solutions in t
cases.

Local case. g50, corresponding to a local energy tran
fer. The energy spectrum isEL}k24e2(k11/k)/l.

Nonlocal case. l50, corresponding to a nonlocal energ
transfer. An interesting solution in this case, without po
and zeros in the energy spectrum, corresponds tog53 im-
plying ENL}(11k)28.

In order to obtain the well established result from nume
cal simulations that show a flat region in the energy spectr
for k→0, the conditiong/l53 must be fulfilled in Eq.~14!.
This relevant condition links the local and nonlocal para
etersl andg. It implies a null flux of energy (P50) in the
absence of dissipation (D50). In the limit of k→` the re-
1-2
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sult emerging from Eq.~14! gives E}k28, corresponding
also to a null flux, now in the absence of injection (I 50).

We solve the differential equation analytically in the low
and high-k limits and obtain the following nontrivial solu
tions:

e~k→0!5B0@11b0g0~k!#,

g05e23/k@313k1k2#/k2; ~15!

and

e~k→`!5B`@1/k41b`g`~k!#,

g`5e23k@113/k13/k2#/k2. ~16!

The above four parametersB0 , b0 , B` , and b` are the
integration constants written in a convenient way.

The complete energy spectrum is obtained by match
the two asymptotic solutions above with a third one, which
obtained as a series solution in the interval@kl ,kh# around
the regular pointk51. This point separates the regionk
,1 whereI dominates from the regionk.1 whereD domi-
nates. We rewrite Eq.~14! replacing the variablek by z51
2k and we find the series solutionsh(z) near z50. The
three solutions are the trivialh05const and the series solu
tion h1 (h2) beginning with az(z2) term. Admitting that the
factorF5exp@2(k11/k)/l# from the local solution will sur-
vive neark51 in the global solution, we findF.a1bz2

1••• after expanding it aroundz50. To fulfill the previous
condition we are restricted toh0 and h2, resulting in the
following solution:

e~k'1!5B1@1/k21b1g1#,

g1~k!5h2~12k!/k2. ~17!

B1 and b1 are integration constants. We have to determ
the six integration constants in Eqs.~15!–~17!. Nevertheless,
their number is reduced to only two by matching the so
tions and their first derivatives at the matching pointskl and
kh .

We have normalized the numerical results@10–14# to
Emax(k)51 and we observe that they are almost collap
into a single curve withE(0)>0.0892. We choose one o
these curves to represent all the numerical results, the c
Z in Fig. 1, which was obtained by Zalesky@12#. Using the
numerical values forEmax(k) and E(0) together with the
matching pointskl50.5 andkh51.5, eventually we obtain
the complete energy spectra for different values of the lo
parameterl. The nonlocal parameterg is linked to the local
one byg/l53.

Our results show an overall agreement with the numer
results and they are summarized by the curvesA, B, andL in
05730
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Fig. 1. The curveA, corresponding tol51/3, shows a par-
ticular good fitting at the right side of the hump. This agre
ment is important since some authors@1,10# admit the exis-
tence of an inertial subrange in this region. However,
maximum of the hump is shifted to left. The curveB, corre-
sponding tol51/6, shows a better agreement with th
hump, in particular near the maximum. All curves show t
strong characteristic decay in the dissipative region of
spectrum. The curveL represents only the local contributio
for the energy flux and a good fitting is obtained withl
51/5. As we can see, the local contribution gives an
equate description of the spectrum in the irregular region
may be seen as a manifestation of the division of thick c
and the coalescence of thin cells as in the Chow-Hwa mo
@9#. This mechanism, involving onlylocal change of wave
numbers and providing a band of states with nearby w
numbers, seems to be a convincing physical interpreta
for our local model.

In conclusion, we have presented a heuristic model for
KSE energy spectrum based on dimensional analysis in
Kolmogorov way. The main characteristic of our model
that it contains a natural mechanism of energy transfer fr
low- to high-k modes. The energy flow is given as the sum
local and nonlocal interactions. The analytical results p
vided by our model show overall excellent agreement w
the numerical calculations. In particular, the plateau for l
k, the hump atk'1, and the decay for highk are clearly
observed. Our model does not have a strong dependenc
the free parameterl; however, the local part of the energ
flux accounts for the strong hump in the spectrum.

FIG. 1. Energy spectra for the Kuramoto-Sivashinsky equati
A andB are the results of our model withl51/3 and 1/6, respec-
tively. L is our local model approximation.Z are the numerical
results of Zalesky@12#.
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